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Abstract   
Brushless Direct Current (BLDC) motors, also known as permanent magnet motors, are used today in many 
applications. A new generation of microcontrollers and advanced electronics has overcome the challenge of 
implementing required control functions, making BLDC motors more practical for a wide range of uses. 
 
This two-part seminar covers BLDC motor control fundamentals and implementation techniques. Part 1 
discusses 120-degree trapezoidal control with and without sensors, while Part 2 covers 180-degree sine 
wave modulation and V/f open-loop and closed-loop control with sensors. Topics discussed include 
interrupt handling for pulse width modulation (PWM) generation and sensor processing with performance 
measurement for CPU bandwidth usage. Implementation of a speed profile (speed vs. time) and its 
interface with the interrupt handler are also described. 
 
Part 1: Introduction 
 
We begin Part 1 of this seminar with the basics of BLDC motors, including their construction and 
operation. Fundamental equations for force and torque generation are presented, along with the basic 
control electronics necessary for proper deployment. We discuss 120-degree modulation and a six-step 
method for operating the motor. Then we see how the modulation can be implemented using Hall sensors 
and back-EMF signals. Implementation examples make use of a microcontroller unit (MCU), which leads 
to a discussion of the necessary features of on-chip timers and interrupt handling within the MCU.  
 
We next review the source code for six-step operation prior to discussing trapezoidal speed control, which 
in BLDC motors is typically implemented using the six-step method. This type of closed-loop control 
allows designers to control motor speed with proper accuracy, and examples show how the MCU can be 
used in speed control.  
 
BLDC fundamentals 
 
A BLDC motor has two main components: a rotor made up of permanent magnets and a stator with a 
winding connected to the control electronics. The brushes and commutation ring that are essential parts of a 
universal motor have been eliminated from the BLDC motor design. Instead, control electronics are used to 
generate a proper sequence for commutation. Because of its design, the BLDC motor is also known by 
other names: permanent magnet synchronous motor (PMSM), brushless permanent magnet motors, or 
permanent magnet AC (PMAC) motor. Sometimes it is simply called a PM motor.  
 
The BLDC motor is based on a fundamental principle of magnetism, which tells us that similar poles repel 
each other, while opposite poles attract. As Figure 1a illustrates, when a current is passed through two coils, 
it generates a magnetic field with a polarity that creates torque on the central magnet—in this case, the 
rotor. When a current is passed in the direction shown, the central rotor rotates clockwise. When the rotor 
reaches a certain position, the direction of the current is changed so that the torque continues further in the 
same direction. When necessary, the current direction is changed again to continue generation of the 
torque. However, instead of two coils, actual BLDC motors typically use six coils positioned 60 degrees 
apart, as indicated by Figure 1b. Then, two coils at a time can be energized to create a torque sufficient to 
move the rotor to a desired position. When this position is reached, other coils are energized to continue 
producing the torque.   
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Figure 1a.  Magnetic filed due to current in stator coils creates torque on the rotor.   
 

 
Figure 1b.  Single pole pair 3-phase motor has six stator coils.   
 
The total amount of torque created on the rotor is calculated using the Lorentz force formula in scalar form:   
 

Torque Τ = r*F = r * ( i * L * β * Sin θ ). 
 
Here, r is the moment arm of the rotor, i is the current passing through stator coils, L is the length of coil, β 
is the magnetic field of the rotor, and θ is the angle between the current direction and the magnetic field of 
the rotor. The larger the current, the larger the torque in the motor because the magnetic field and winding 
length remain the same once the motor has been constructed. Designers have only one quantity to change 
during motor operation: the current.   
 
In vector form, this formula is T = r x F, where all three quantities are given in vector form with magnitude 
and direction. This formula is important because it allows designers to create an algorithm based on vector 
formulation when they want to control torque and the flux in the motor.   
 
A BLDC motor offers many advantages over other types of motors. Its speed is not impeded by the stress 
limitations of brushes. Because it has no brushes to create sparks, the motor can be used in hazardous 
environments. It is efficient, reliable, and generally low maintenance. The torque-speed relationship is 
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linear. Also, a high torque-to-volume ratio means that a BLDC motor requires less copper (metal) than do 
other motor types.  
 
BLDC motors do have some drawbacks, though. Rotor position information is required for proper 
operation, so either Hall sensors or a back-EMF signal with intelligence must be used to obtain this 
information. In general, the motor requires external power electronics, whereas an AC induction motor 
achieves constant-speed operation when started from and driven by an AC power supply. The BLDC motor 
is a 3-phase device. As such, it requires an inverter and, thus, a power switch. Its rotor requires magnetic 
(rare-earth) metal, so it may cost more. Finally, incorrect control of a BLDC motor, especially at high 
temperatures, can damage its permanent magnet, so careful design of the control electronics is essential. 
 
Despite these drawbacks, use of BLDC motors abounds in the industry. Several examples are illustrated in 
the following figures. Figure 2 shows the GE Electronically Commutated Motor (ECM), which has 12 
poles (six pole-pairs) and comes in various horsepower ratings. Its electronics are mounted at the end of the 
motor in a case that is the same diameter as the motor itself. The GE ECM is a 3-phase motor that accepts a 
single-phase AC supply. Its stator has 18 coils and the rotor has surface-mounted magnets. Notice that the 
rotor is located inside the motor and stator is on the outside.  
 

 
 

Figure 2. Electronically Commutated Motor (ECM) with control assembly. 
 
In contrast, the pancake motor shown in Figure 3 positions the rotor on the outside and the stator inside. 
The rotor has several surface-mounted magnets, and the stator has many coils. The small, low horsepower 
motor shown in Figure 4 (slide 6, right figures) has external stators and internal rotors. All of these BLDC 
motors offer high torque and low volume, giving them an edge over universal or AC induction motors for 
applications in small spaces.   
 

 
Figure 3  Pancake motor assembly shows stator and rotor. 
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Figure 4.  Small Brushless DC motor for appliance applications. 

 
BLDC motor control 
 
In Figure 5a we see that the stators in 3-phase BLDC motors are connected in a Y or a star formation. All 
three phases are connected in the center, which is called the neutral or ½ Vdc point. For this type of 
connection, the sum of the currents in all three phases is zero. Note that only two currents have to be 
measured; the third can be derived easily.   
 

Isa + Isb + Isc = 0 
 

 

 
Figure 5a.  Star or Y-winding for the stator has sum of currents equal to zero. 

 
The stator-per-phase circuit shown in Figure 5b has one inductive element and one resistive element. Its 
torque is proportional to the current as long as the magnetic field does not change.   
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Figure 5b.  Stator equivalent circuit.   
 
In this case, torque is T = k  Φ  is,  where k is constant, Φ is the magnetic field, and is is the stator current. If 
we combine k and Φ, we can write simply T = K * is , where K is known as the torque constant. The 
amount of current passing through the stator coils is based on the voltage applied and the back-EMF 
voltage generated. As the motor starts rotating, it generates more back-EMF voltage, which reduces the 
current and results in less torque. The diagram in Figure 5c (slide 7) shows that as the current increases, 
speed increases up to a certain point and then becomes constant. Torque increases up to a certain point and 
then decreases. This behavior is typical in a BLDC motor. Flux is pre-established by the magnetic field of 
the rotor. Therefore, torque is controlled simply by controlling the current in the stator. The commutation 
sequence ensures that the rotor rotates in synchronization with the stator excitation.   
 

 
Figure 5c.  Torque and speed increases as current increases in the stator coils.   
 
Typical hardware used to control a BLDC motor are the converter and inverter is shown in Figure 6a. Six 
power-MOSFET or insulated-gate bipolar transistor (IGBT) switches are used in the inverter. When AC to 
DC conversion is not required, a DC supply can be connected directly to the inverter board. A typical 
BLDC motor drive configuration is shown in Figure 6b (slide 8). Notice that the power switches are labeled 
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S1 – S6 in this figure. They have other common names, which can be used according to the author’s 
preference.  Thus,  

S1 = Up  = U+ = A+   
S2 =  Un  = U- = A-  
S3 =  Vp  = V+  = B+  
S4 =  Vn  = V- = B-   
S5 =  Wp  = W+ = C+   
S6 =  Wn  = W-  = C-  

 

 
 

Figure 6a.  Typical hardware layout with converter and inverter modules. 
 

 
Figure 6b.  Typical representation with six switch configuration. 

 
A BLDC motor also has sensors. For example, Hall sensors and an encoder may be used to provide 
information about the position of the rotor. These sensors are not connected with the commutation and 
control portion of the inverter and MCU. However, because the MCU must process signals from these 
sensors, they must interface with the MCU. Hall sensors and the encoder are connected to the rotor, and 
rotation is necessary to create Hall signals. 
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Back-EMF signals are created from the high side of the phase voltage using a resistor ladder. Current can 
be measured using DC current transducers (DCCT) or AC current transducers (ACCT) with phase wires 
passing through the coils. Additionally, certain techniques allow single-phase currents to be measured using 
a shunt resistor. The back-EMF and DCCT/ACCT or shunt resistor are connected to the stator.  
 
In motor terminology, control based on Hall sensors and an encoder is known as control with sensors, while 
control without these elements is known as sensorless control. 
 
 
120-degree modulation and commutation sequence 
 
As Figure 1b illustrates, a BLDC motor has six coils with phase settings generally denoted as Up, Un, Vp, 
Vn, Wp, and Wn. (Alternatively, we can use U+, U-, V+, V-, W+, and W- to indicate these settings.) Three 
Hall sensors are located 120 degrees apart around the stator. Depending on which magnetic field passes 
over each sensor, the output may be high or low. When the north pole passes over a sensor, its output is 
high or state 1. When the south pole passes over a sensor, its output is low or state 0. Hall sensors thus 
provide information about polarity and position.   
 
A six-step commutation sequence is used to steer the current and produce torque. The sequence starts with 
the initial position of the rotor aligned properly at 0 degrees. Power at the coils U+ and V- is turned on. 
This excitation creates a magnetic field so that the rotor turns in the intended direction—towards the 60-
degree position. When this position is reached, V- is turned off and W- is turned on. Because U+ is still on, 
the U+ and W- coils are excited, and torque continues in the same direction.  
 
When the rotor reaches the 120-degree position, U+ is switched off and V+ is switched on. W- is still on 
and so the V+ and W- excitation continues to produce torque in the same direction. At the 180-degree 
position, W- is turned off and U- is turned on, while V+ is kept on. At 240 degrees, V+ is turned off and 
W+ is turned on, with U- kept on. At 300 degrees, U- is turned off and V- is turned on, and W+ is kept on.  
Finally, when the rotor completes a 360-degree rotation, W+ is turned off and U+ is turned on, with V- kept 
on. Thus, we are back to the original state or step 1.  
 
These six steps, depicted in Table I, form the commutation sequence that produces correct rotation in one 
direction. For rotation in the reverse direction, the steps are executed in reverse order: 1, 6, 5, 4, 3, 2 and 
back to 1.   
 
 

Table I.  Six steps for 120-degree modulation. 
 

Step # Phase Up Phase Vp Phase Wp Phase Un Phase Vn Phase Wn 
1 Up    Vn  
2 Up     Wn 
3  Vp    Wn 
4  Vp  Un   
5   Wp Un   
6   Wp  Vn  

 
 
In our description, 'step' is synonymous with 'state'. Figure 7 shows the complete six-step sequence with 
angles given in units of radians. Figure 7 also shows the current flow as it enters from one coil and exits a 
second coil. This current flow corresponds exactly to the six steps of turning the switches on and off. Since 
each positive phase (U+, V+, and W+) is energized for 120-degree rotation, and each negative phase (U-, 
V-, and W-) is also energized for 120-degree rotation, this type of modulation is called 120-degree 
modulation. At each of six steps, one power-MOSFET or IGBT is switched on or off, hence the term 120-
degree six-step commutation. Figure 8 illustrates these principles in a 120-degree drive system.   
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Figure 7.  Six step modulation for Brushless DC motor. 

 
 

 
Figure 8.  Six steps modulation with switch configuration. 

 
Control electronics—in particular the MCU—play an important role in this operation. Hall-effect signals 
are fed into MCU as external interrupts. With every interrupt signal, the MCU performs a state change; in 
other words, it turns off one switch device and turns on another one. The MCU performs its task by 
executing interrupt-based code and changing the state of the output pin. The MCU has three interrupt input 
pins, one for each Hall sensor, and six output pins, one for each switch driver.  
 
The operation of a motor with 120-degree six-step commutation, along with the behavior of the phase 
currents, is shown in Figure 9.   
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Figure 9.  Six step commutation with phase currents behavior. 

 
Implementation example  
 
Let’s consider the example of Hall sensor signal processing. At every interrupt, the MCU has to execute a 
code that properly changes the output state. This interrupt-based code must interpret the Hall signals 
correctly and then change power-switch states, first turning off one switch and then turning on the next.   
 
Since Hall sensors provide polarity, we can easily determine which Hall sensor interrupt has been received 
by reading all three polarity levels. A Hall sensor set-up in which rising Hall signals occur at every 120-
degree position is shown in Figure 10 (slide 17). Notice that the rising U Hall signal is at 0 degrees, the 
rising V Hall signal is at 120 degrees, and the rising W Hall signal is at 240 degrees. Because Hall sensors 
have a south pole located 180 degrees from the north pole, a falling signal will occur at the 180-degree 
offset of each rising signal, thus creating six signals over the complete rotation.   
 
On receiving the first interrupt—the rising edge of Hall A—the MCU firmware reads the three interrupt 
input pins as 1, 0, 1 and sets the output pins to state 1, with Up and Vn on. On receiving the second 
interrupt—the falling edge of Hall C—the MCU firmware reads the input pins as 1, 0, 0; compares this 
reading to the previous state (1, 0, 1); and sets state 2. On receiving the third interrupt—the rising edge of 
Hall B—the MCU reads the input pins as 1, 1, 0; compares the reading to 1, 0, 0 and sets state 3. The next 
three interrupts are processed in a similar manner to complete the cycle.  
 
In this example, we need to know which sensor is A, which is B, and which is C. Motor manufacturers 
generally provide this information. Nevertheless, it's instructive and helpful to lay out the board, connect 
the motor, power up the MCU only (not the entire motor), and view the signals from the Hall sensors, 
which get their power from the MCU board. Now we can examine the sequence of Hall signals easily, 
turning the motor by hand for one complete rotation. The signals can also be viewed on a scope as the 
motor is rotated to determine whether or not they are 120-degree Hall signals. 
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Figure 10.  Six step changes for 120 deg input Hall sensors.  

 
If we observe 60-degree Hall signals, which means that the rising edge occurs every 60 degrees rather than 
every 120 degrees, then the sequence of inputs changes as shown in Figure 11 (slide 19). On the first 
interrupt, the firmware reads 1, 0, 0 instead of 1, 0, 1. The sensor changes to a state-1 configuration in 
which Up and Vn are still on. It does not change to the state-2 configuration used in the 120-degree 
example. On the next interrupt, the sensor reads the input pins as 1, 1, 0 and then the firmware makes the 
change to state 2. The cycle continues according to the sequence of Hall signals. Notice that the firmware is 
changed slightly and the sequence of Hall input signals is different. For proper sensor implementation, 
designers must know how the Hall sensors are mounted and how the firmware should be written.   
 

 
Figure 11.  Six step changes for Hall sensors mounted 60 deg rising signals. 

 
Table II further compares two Hall-sensor configurations. Again, the best way to implement the firmware is 
to perform some initial tests to determine what is necessary for rotation in one direction and what is 
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necessary for rotation in the reverse direction. Once this information is available, the firmware can be 
implemented easily, including the correct rotational sequence.  
 
It’s important to note that these examples are based on a one pole-pair motor. A motor that has more pole 
pairs will have a larger sequence on the signals in one mechanical rotation. For example, a Bodine motor 
has two pole pairs, and so instead of six interrupts, it has 12 interrupts per mechanical rotation. Thus, when 
tests are performed to obtain the sequence of Hall signals, the motor must be rotated slowly, smoothly, and 
continuously—otherwise, the sequence observed may be incorrect.   
 
 

Table II.  Comparison of two Hall-sensor configurations. 
 

Interrup
t 

Rising 
Hall 

signal 

Sequence Rising 
Hall 

signal 

Sequence 

1 A 1, 0, 1 A 1, 0, 0 
2  1, 0, 0 B 1, 1, 0 
3 B 1, 1, 0 C 1, 1, 1 
4  0, 1, 0  0, 1, 1 
5 C 0, 1, 1  0, 0, 1 
6  0, 0, 1  0, 0, 0 
     

 
The C programming code for a commutation sequence for the Renesas R8C MCU is shown in Figure 12. 
The case statements are translated into a compact code size by the compiler. Individual phase voltages and 
voltages between U-V, V-W and W-U are shown in Figure 13.   
 

 
 

Figure 12.  R8C code in C language for 6 step changes for BLDC motor. 
 

Switch (stg_p)  /* Implement Appropriate State for Control */
case 0:

p1_1 = 0; /* VP Off */
p1_2 = 0; /* WP Off */
p3_0 = 0; /* UN Off */
p3_2 = 0; /* WN Off */
p3_1 = 1; /* VN On */
p1_0 = 1; /* UP On */
break;

case 1:
p1_1 = 0; /* VP Off */
p1_2 = 0; /* WP Off */
p3_0 = 0; /* UN Off */
p3_1 = 0; /* VN Off */
p3_2 = 1; /* WN On */
p1_0 = 1; /* UP On */
break;

case 2:
p1_0 = 0; /* UP Off */
p1_2 = 0; /* WP Off */
p3_0 = 0; /* UN Off */
p3_1 = 0; /* VN Off */
p3_2 = 1; /* WN On */
p1_1 = 1; /* VP On */
break;

case 3:
p1_0 = 0; /* UP Off */
p1_2 = 0; /* WP Off */
p3_1 = 0; /* VN Off */
p3_2 = 0; /* WN Off */
p3_0 = 1; /* UN On */
p1_1 = 1; /* VP On */
break;

case 4:
p1_0 = 0; /* UP Off */
p1_1 = 0; /* VP Off */
p3_1 = 0; /* VN Off */
p3_2 = 0; /* WN Off */
p3_0 = 1; /* UN On */
p1_2 = 1; /* WP On */
break;

case 5:
p1_0 = 0; /* UP Off */
p1_1 = 0; /* VP Off */
p3_0 = 0; /* UN Off */
p3_2 = 0; /* WN Off */
p3_1 = 1; /* VN On */
p1_2 = 1; /* WP On */

}

Switch (stg_p)  /* Implement Appropriate State for Control */
case 0:

p1_1 = 0; /* VP Off */
p1_2 = 0; /* WP Off */
p3_0 = 0; /* UN Off */
p3_2 = 0; /* WN Off */
p3_1 = 1; /* VN On */
p1_0 = 1; /* UP On */
break;

case 1:
p1_1 = 0; /* VP Off */
p1_2 = 0; /* WP Off */
p3_0 = 0; /* UN Off */
p3_1 = 0; /* VN Off */
p3_2 = 1; /* WN On */
p1_0 = 1; /* UP On */
break;

case 2:
p1_0 = 0; /* UP Off */
p1_2 = 0; /* WP Off */
p3_0 = 0; /* UN Off */
p3_1 = 0; /* VN Off */
p3_2 = 1; /* WN On */
p1_1 = 1; /* VP On */
break;

case 3:
p1_0 = 0; /* UP Off */
p1_2 = 0; /* WP Off */
p3_1 = 0; /* VN Off */
p3_2 = 0; /* WN Off */
p3_0 = 1; /* UN On */
p1_1 = 1; /* VP On */
break;

case 4:
p1_0 = 0; /* UP Off */
p1_1 = 0; /* VP Off */
p3_1 = 0; /* VN Off */
p3_2 = 0; /* WN Off */
p3_0 = 1; /* UN On */
p1_2 = 1; /* WP On */
break;

case 5:
p1_0 = 0; /* UP Off */
p1_1 = 0; /* VP Off */
p3_0 = 0; /* UN Off */
p3_2 = 0; /* WN Off */
p3_1 = 1; /* VN On */
p1_2 = 1; /* WP On */

}
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Figure 13.  Phase voltages for six step trapezoidal control. 

 
Trapezoidal control with Hall sensors 
 
To understand trapezoidal control in a BLDC motor, let's first consider full-speed operation. When a full 
voltage is turned on every 120 degrees of rotation, and when proper commutation is performed according to 
the Hall-signal inputs, the motor rotates at its full operational speed. The MCU receives interrupt inputs and 
properly executes outputs according to the sequence desired.  
 
The full speed at which the motor operates is determined by certain characteristics. The applied voltage and 
back-EMF are balanced so that the torque necessary to maintain operational speed is achieved. Figure 14 
shows a current profile—that is, the shape of the currents—at full speed with input Hall signals and six-step 
currents. Notice that the shape of the phase currents is trapezoidal. As we have seen before, torque in 
BLDC motors is proportional to the current passing through the coils. Therefore, to reduce the speed, we 
must reduce the current. Torque is maintained at the necessary level by changing the current to maintain the 
desired speed.   
 

 
Figure 14.  Current at full speed operation is trapezoidal and hence the name “Trapezoidal” control. 

 
To reduce the current in coils, voltage is modulated using the pulse width modulation (PWM) method 
illustrated in Figure 15. During a state, the voltage is turned on and off at a suitable frequency, known as 
the carrier frequency, in a manner that applies less current to each coil. As a result, less torque is created on 
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the rotor and speed is reduced. A PWM timer is used to modulate the output state of the pin and thus the 
voltage applied to the phase. This modulation is typically performed at a carrier frequency higher than the 
state-change frequency. Even when the voltage is modulated, the current profile remains trapezoidal—thus 
the name, trapezoidal control.   
 

 
 
Figure 15 Trapezoidal currents with modulation in lower switches.   
 
The PWM method requires us to know carrier frequency and duty cycle. We can select an arbitrary 
frequency for the carrier signal we will modulate. But how do we know what duty cycle is needed to 
maintain the desired speed? Hall sensors come to rescue again, as speed can be measured using the Hall-
signal interrupts. The angle between two consecutive Hall signals is 60 degrees by construction, and these 
signals are mapped onto the interrupt pins by the MCU. Using an MCU timer peripheral, the time between 

two consecutive Hall signals 
can be measured and speed can 
be computed: It's 60 degrees 
divided by the time measured 
between two Hall signals. To 
determine average speed, we 
can measure the time between 
six or more Hall signal 
interrupts, whatever is suitable 
in terms of time to control the 
speed. Now it becomes easy to 
adjust the duty cycle. If the 
measured speed is high, the 
duty cycle is reduced. If the 
measured speed is low, the 
duty cycle is increased.   
 
 

 
Figure 16.  R8C based BLDC control.  
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each output pin, or a timer that can generate six outputs properly with modulation, as well as one interrupt 
for emergency shut-down. These resources are depicted in Figure 16, in which an R8C is the MCU. 
 
 
Timing example 
 
Now let’s consider an example of how timing is used in speed control. Assume that we have a BLDC 
motor that has two pole pairs and a maximum operational speed of 3600 RPM. The MCU is running on a 
20-MHz CPU clock, and that clock is also used for the timers and counters.  
 
Our calculations will be based on the following formulas: 
 

Speed (Hz) = Speed (RPM) / 60 = mechanical Hz 
 Mechanical Hz = 60 
 
Electrical Hz = #pole pairs * mechanical Hz 
 Electrical Hz = 120 
 
Electrical time period or period = 1/electrical Hz;  
 Period = 1/120 = 8.3333 ms = 8333.3 µs  
 
Time tH between two Hall signals = electrical Hz / 6;   
 tH  = 8333.3 /6 = 1388.9 µs  
 
Counts between two Hall signals = Count Frequency in MHz * time between two Hall signals 
 Counts = 20 * 1388.9  = 27,778 counts in our example.   

 
When we fix the counting frequency at 20 MHz and the pole-pair equal to 2, the formula can be simplified 
to give  
 Counts = 100,000,000 / RPM 
 
This is a very simple formula.  
 
Next we can prepare a table that gives RPM and corresponding counts. It’s important to check at what 
RPM the size of the 16-bit counter will become an issue. In the example above, at 1200 RPM the count 
value is 83,333, which causes the counter to overflow. In fact, for a count less than 65,535, the minimum 
RPM is 1535. Therefore, a 16-bit counter driven by a 20-MHz clock is usable only as long as the motor 
speed stays above 1535 RPM. See Table III.  
 
 
Table III.  Counts for various reference speeds.  
 

Number Speed in RPM Counts 
1 1200 83,333 * 
2 1800 55,556 
3 2400 41,667 
4 3000 33,333 
5 3600 27,778 
6 6000 16,667 

* Note: 16-bit counter overflows because motor speed is too slow.   
 
Based on this simple formula and table, a control scheme can be developed to adjust the duty cycle. We can 
measure counts between two Hall pulses fairly easily and thus determine whether or not a motor is running 
at the desired speed. For example, if the desired speed is 3000 RPM, then we should expect 33,333 counts. 
If we measure 40,000 counts, the motor is running slow and PWM duty cycle must be increased. If we 
measure 30,000 counts, the motor is running fast and the duty cycle must be reduced.  
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Code for such control is shown in Figure 17, which again uses an R8C MCU as an example. The timer C 
peripheral in this setup has two registers, tm0 and tm1. Register tm1 sets up the carrier frequency and tm0 
sets up the duty cycle. Output is low (= 0) until the count reaches tm0. When the count matches tm0, the 
output is turned high (= 1). When the count matches the tm1 value, the output is set low (=0) and the 
counter is reset. Thus, the active duty cycle extends from the tm0 value to the tm1 value, and the non-active 
duty cycle is from 0 to the tm0 value.   
 

 
Figure 17.  R8C code in C language for PWM duty control to achieve desired speed.   
 
In our example, the register tm1 is set to a value of 1000 to get a 20 kHz carrier frequency. The time 
between two Hall pulses is called CountMeas and the high and low reference counts are CountRefH and 
CountRefL. When time is measured, the value of CountMeas is compared to CountRefH and register tm0 is 
adjusted accordingly. If the measured count is higher than the reference count CountRefL, the motor is 
running slow and the tm0 value is reduced to increase the duty cycle. If the measured count is lower than 
the reference count, the tm0 value is increased to reduce the duty cycle. Finally, a check is made to protect 
the minimum and maximum values.  
 
Simple code such as this works well for adjusting the duty cycle to get a desired speed. However, in a few 
cases this control method fails to work properly, particularly, when the increase and decrease in the tm0 
register moves back and forth. Recall that we are using CountRefH and CounteRefL—not just a single 
CountRef—for comparison. This allows us to insert what is known as a dead band. Let’s say that we want 
our motor to rotate at 3000 RPM. From Table III, we see that the reference count or expected count is 
33,333. Now we must apply a dead-band value, which is determined by the accuracy we require. If we 
require 100-RPM accuracy, then we must compute values for CountRefH using 2900 RPM (34,483) and 
CountRefL using 3100 RPM (32,258). When RPM gets within this range, the control algorithm will stop 
adjusting the PWM value. Based on the control frequency, the sensor measurement frequency, and the 
accuracy requirements, we can tighten this dead-band value. However, we must be cautious. Too tight a 
dead band will cause the motor speed to fluctuate between one value and another. 

void pwm_set(void)
{
/* set a tm1 register (PWM period) */
tm1 = 1000;  //PWM carrier frequency at 20 kHz 
case UPDATE_SPIN:

if(CountMeas > CountRefH)   
//If interrupt time is larger than upper limit the pwm increases

tm0 -= 1; //speed is slower so increase pwm value by reducing tm0    
if(CountMeas < CountRefL)  // speed is higher 
tm0 += 1;  // so reduce pwm by increasing tm0

if(tm0 >= 500)     // Check for upper limit
tm0 = 500-1;

if(tm0 <= 5)       // Check for ower limit
tm0 = 5;

pwm_upd = tm0;      
break;

tcout = 0x47;  /* CMP00-CMP02 enable, CMP10-CMP12 disable */
/* CMP00-CMP02 reverse */

tcc00 = 1;  /* timer C count start */ 

}
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Design engineers frequently use proportional-integral control and motor response characteristics to 
determine gains. This approach generally gives a better control algorithm. We have used such algorithms 
successfully, but only after we first made the motor rotate closed-loop using the simple approach just 
described. We generally suggest such an approach.  
 
Starting a motor 
 
Because motors are started in open-loop fashion, they require a duty cycle somewhere between 50 and 
70%. This ensures that the motor has enough starting torque and that the rotor will turn in synchronization 
with the rotating magnetic field of the stator. If the starting torque is insufficient, the rotor may never attain 
a synchronous state and the firmware may never get feedback from the Hall signals.  
 
Generally motors are started at a 70% duty cycle with a fixed commutation period of about 500 RPM. Once 
the MCU starts to receive the Hall signals, the speed measurements are stabilized. Then the simple control 
algorithm stabilizes the PWM value and the speed command is set to the desired speed.  
 
This process works best when we make small, incremental speed changes and allow the algorithm to follow 
with the appropriate PWM changes.  
 
Modulation schemes 
 
Another issue in speed control is whether to modulate only the Up or both the Up and Vn. Several 
approaches can be taken. Many designers prefer to modulate only the upper IGBT or power-MOSFET 
switches, while others choose to modulate only the lower switches. These approaches are known as 
asymmetric modulation schemes.  
 
If only the upper switches are modulated, then access energy is drained out of the motor because the lower 
switches are always on. If only the lower switches are modulated, the motor continues to store energy in the 
system. The result may be good or bad. Asymmetric modulation creates differing stresses on the switches, 
so the control algorithm for such modulation has to exactly fit the operation. If the upper switches are 
modulated, they are subject to greater stress and wear and tear, which increases the probability of their 

failure. If only the lower switches 
are modulated, they will be more 
prone to failure.  
 
Asymmetric modulation typically 
employs one of two schemes: 120-
degree modulation or 60-degree 
modulation. As Figure 18 shows, in 
120-degree modulation the upper 
switches are modulated as 
necessary during the entire on time. 
In 60-degree modulation, the upper 
switches are modulated for the first 
30 degrees and the last 30 degrees, 
with the switch left on for the 
middle 60 degrees. This 60-degree 
modulation scheme does not permit 
a full range of operation. In many 
cases, the motor can be operated 
only in 50 to 100% of its speed 
range.   
 
 

 
Figure 18  Asymmetric modulation schemes for six step control method.  
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Some designers modulate both the upper and lower switches. Even though this scheme is somewhat more 
complicated to implement, it allows more symmetrical stress and wear and tear on the switches. With this 
scheme, each switch can be modulated 60 degrees at a time, as illustrated in Figure 19, stressing it in a 
more symmetrical fashion. The scheme also works well with the interrupts and state-change requirements. 
As we know from the six-step algorithm, a state change is required every 60 degrees. Thus, when a state 
change is made, a switch is also selected for modulation. As shown in Figure 19, each switch is modulated 
60 degrees, creating an equal stress on each. Also, the motor can operate in the full speed range, because 
the modulation covers the entire electrical cycle. Generally, each switch remains on for 120 degrees of 
electrical rotation time, and the state-change algorithm selects which 60-degree portion will be modulated.   
 

Figure 19.  Symmetric modulation scheme that stresses all power switches equally.   
 
If we combine our modulation scheme, speed sensing, and PWM computation within our motor control 
firmware, then our firmware structure will be similar to that shown in Figure 20 (slide37). Block 1 ensures 
that proper state changes are made to achieve 120-degree modulation. Many times this commutation is 
based strictly on the MCU receiving the Hall-sensor signals and processing them in interrupts, an 
implementation technique that ensures that state changes are made properly. Thus, if the motor is running 
slowly, no abrupt state changes will be made, and the motor will maintain its synchronization.  
 
Block 2 of Figure 20 has two components, the first of which is used to measure speed from the Hall 
sensors. This measurement requires the use of a timer resource. For every Hall-signal interrupt, the timer is 
read and reset so that it will measure the time of the next Hall signal.  

 
Figure 20.  Closed loop control method with position sensor. 
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The second component in Block 2 uses this measured count or measured speed in the control algorithm to 
set the new duty cycle according to the calculations discussed earlier. Notice here that we have added a 
bus-voltage measurement into our scheme. When AC is rectified into DC, voltage ripple can occur at about 
60 Hz. Often this ripple is in the 5% range—a large variation that can be handled properly. Because the 
modulation runs at 20 kHz and the ripple is at 60 Hz, we can correct for the ripple by accurately measuring 
the bus voltage at the right frequency. Experience tells us that when we make such corrections, the motor 
will reach the desired speed quickly and maintain that speed properly. If we don't make such corrections, 
then the voltage ripple will cause torque ripple that may, in turn, cause the speed of the motor to continually 
vary above and below the set point.  
 
Summary of sensor-based control 
 
Our discussion of BLDC motor control using the 120-degree Hall-sensor method has covered a number of 
points, To summarize, Hall sensors are an integral part of 120-degree, six-step trapezoidal control. These 
sensors are used to detect rotor position and to make appropriate state changes (known as the commutation 
sequence). Using position and timing information, we can measure speed and implement appropriate 
control. Thus, Hall sensors provide all of the necessary feedback information for the rotor. This method of 
control has several advantages. It is easy to use, the required code is simple, and switching is 
straightforward. The switching has built-in dead time and does not require a special timer. Commutation or 
switching can be directly connected to the Hall signals for simplicity. Moreover, this method implements 
effective speed control. 
 
However, Hall-sensor based control does have its disadvantages. Hall sensors increase the cost of the motor 
and require that five more wires be connected. Also, the sensors add another source of EMI to the motor. 
Their behavior is noisy, too. They are susceptible to corrosion and are usually the first component in the 
system to fail. If the motor is a hermetically sealed system, Hall sensors will require extra seals.   
 
The 120-degree Hall-sensor control method is reviewed in Figure 21, using an R8C/13 series MCU. Again, 
the timer C performs the modulation function at 20 kHz frequency. The R8C MCU has an internal structure 
that allows firmware to multiplex on the output pins as necessary to generate modulation. Firmware can 
connect the timer C output directly to a pin, or it can disconnect timer C from that pin and set the pin's state 
to either high or low. That is, the firmware can change the output to high, low, or modulation.  

 
Figure 21.  R8C/13 based system configuration for six step control of a BLDC motor. 

 
Looking at Figure 21, notice that firmware also can connect the upper three pins, the lower three pins, or 
one pin at a time. Six outputs are directed to the integrated power module (IPM), which in turn connects to 
the three phases of the motor. Three Hall signals are received on three interrupt pins—INT1, INT0, and 
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KI3—on the rising or falling edges. Timer X, used as the speed measurement counter, measures time 
between two consecutive Hall signals and provides CountMeas for the speed-control loop. The INT3 pin is 
used as an emergency-shut-down interrupt when a high-current or a high-temperature alarm signal is 
received from the IPM.  
 
The R8C MCU has eight ADCs that can be used to implement tasks such as measuring temperature, bus 
voltage, pressure, and current. Current measurement is particularly important, because measuring average 
current through several electrical cycles lets us compute torque and speed fairly accurately. By combining 
speed measurement and current measurement, firmware can determine the point on the torque speed curve 
at which the motor is operating. Since the R8C MCU has several GPIO pins, the firmware can use an LED 
on/off scheme to alert us to the internal state of the algorithm and the performance of the motor.  
 
Because the 16-bit R8C MCU runs at a 20 MHz CPU frequency and includes on-chip flash and SRAM, 
designers can use this device to create single-chip solutions. The MCU’s peripherals include eight channels 
of ADC, three 8-bit timers with pre-scalars, and a flexible 16-bit input-capture and output-compare timer 
that can generate up to six PWM outputs. The device also has a watchdog timer with ring oscillator, two 
serial interfaces, a power-on reset function, a low-voltage detect function (generally known as brown-out 
detect), and an internal clock-generation circuit. Additionally, the MCU has up to 22 I/O pins and 8, 12, or 
16KB of flash plus 512 bytes, 768 bytes, or 1KB of on-chip RAM.  

 
Data flash is an 
especially important 
feature of the MCUs in 
the R8C/13 family. The 
two extra 2KB blocks of 
data flash have high-
endurance write/erase 
capability and can 
eliminate the need for 
external EEPROM for a 
true single-chip solution. 
An R8C-based BLDC 
motor control power 
board is shown in figure 
22 (slide 41) with motor 
interfaces and IPM 
placement.   
 
 

Figure 22.  R8C MCU and integrated power module based motor control reference platform. 
 
 
Sensorless BLDC control 
 
As noted earlier, a significant disadvantage of Hall sensors is their cost. One way to reduce the overall cost 
of the motor is to eliminate them.  
 
The 120-degree modulation, six-step method of control does allow the use of back-EMF signals to detect 
the rotor position. Recall that only two of the power switches are turned on at each state change; one is left 
off. In fact, one entire set of up-and-down switches is not powered on. This is best understood by looking at 
the Up and Un sequence shown in Table I and also looking at Figure 23.   
 
First the Up switch is turned on for 120 degrees of rotation. Then for 60 degrees there is no power in the U 
phase. The Un switch is turned on for the next 120 degrees and again, there is no power for next 60 
degrees. Thus, every 120 degrees there is a time period of 60 degrees during which we can observe the 
back-EMF generated by the rotating magnet.  
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When Up is energized, current is high in the U coil. When Un is energized, current is low in the U coil. At 
this point the current changes direction from positive to negative, thus creating a zero crossing. Detecting a 
zero crossing is equivalent to detecting the rotor position. However, instead of detecting 60 degrees, 90 
degrees are detected. Thus, we can use zero-cross detection to identify the rotor position and then wait until 
the proper angle is reached to change the state. For example, when a zero crossing is detected at 90 degrees, 
the firmware can wait another 30 degrees of rotation to perform a state change. The speed-control 
algorithm remains the same, but a wait period has been added.   
 

 
Figure 23.  BLDC motor control without position sensor. 

 
Now let’s compare the Hall-sensor based algorithm to the back-EMF based algorithm. Both methods use 
the 120-degree six-step method and perform a state change every 60 degrees. Both methods use the same 
trapezoidal technique to control speed. The difference between two methods lies in which signal is used for 
commutation. The sensor-based method uses the Hall signal for commutation. As soon as the signal arrives, 
the state must be changed. The back-EMF method detects a zero crossing, waits for another 30 degrees of 
rotation, and then makes the state change. Again, in both methods, the speed-control algorithm and pattern 
recognition technique are the same.   
 

 
Figure 24.  Back EMF detection for symmetric modulation of power switches. 
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Since both methods use the same type of modulation and the same sequence for energizing phases, both 
have torque ripple, low efficiency, and high noise. Noise is particularly noticeable when a low carrier 
frequency is used. The response for speed control is acceptable when the sensor-based algorithm is used, 
but it is slow for the sensorless algorithm and in some cases inadequate. Further, there are issues with zero-
crossing detection. Zero crossing happens in between modulations, when a particular phase is not 
energized. As Figure 24 shows, the MCU output is modulating each switch 60 degrees. Output for the 
inverter shows modulation from rail to rail on the voltage. When this voltage is compared to ½ Vcc, the 
zero crossing becomes visible and then is detected by the interrupt.   
 
 
Implementation example 
 
Proper implementation with comparators using an R8C/1A MCU is shown in Figure 25. Back-EMF is 
detected from the phase voltage, which is high. Thus, a resistor ladder is used to scale down the input into 
the MCU. Comparators are used to input high or low voltages in interrupt pins as they did in the Hall-
sensor example. In this case, when the interrupt is received, the timer X is read and its count is divided by 
2. A second counter is then started that will be reset when it reaches one half the timer X count. When that 
reset occurs, the state change is made. The example shown here uses Timer Y for this purpose. This 
construct is required because the state change must be delayed for a 30-degree rotation period. Since we 
have measured the 60-degree rotation time, it's easy to calculate the 30-degree period. Note that because 
this R8C MCU uses comparators instead of an ADC, it is an extremely cost-effective solution.   
 

 
Figure 25.  R8C/1A based sensorless implementation with Back EMF detection. 

 
There is little difference between sensor and sensorless control in terms of MCU processing. The pattern 
calculation and speed processing are essentially the same. See Figure 26 (slide 51). When output stage 
calculations are done with zero-crossing detection rather than Hall sensors, however, one more timer is 
required to accommodate the waiting period. This may also change the input masks, which are similar to 
those used for the Hall 120-degree and 60-degree control methods. Calculations for duty cycle and the bus 
voltage measurement and corrections are unchanged. Experience shows that proper signal conditioning is 
required for signals going into the comparators. Otherwise, errors can occur in detecting zero crossings, 
resulting in poor speed control and high torque ripple.   
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Figure 26.  Control flow for sensorless (Back EMF detection) implementation. 

 
Like the Hall-sensor method, the back-EMF based sensorless control approach has advantages and 
disadvantages. Back-EMF methods eliminate Hall sensors and thus reduce implementation costs. The 
motor is cheaper to build. However, the cost of new sensors is coming down and decreasing the economic 
advantage of sensorless motor controllers. Furthermore, sensorless control has various implementation 
issues. The process of detecting zero crossings introduces extra noise and may cause poor state changes. 
Sensorless control methods also introduce more torque ripple. Worse, the speed control performance 
achieved is not acceptable in some applications.   
 
Alignment procedure 
 

It’s important to note that before 
a BLDC motor is commanded to 
attain a certain speed, its rotor 
must be aligned properly for 
smooth operation. This alignment 
can be done in various ways. One 
of the simplest is to command the 
Vp, Un, and Wn for a certain 
time period, giving a pre-
determined number of pulses to 
the rotor. This procedure aligns 
the south pole of the rotor with 
the Vp coil, as shown in Figure 
27, which shows a motor that has 
one pole pair. After the rotor is 
aligned, it will rotate with a fairly 
predictable amount of torque, 
starting with step 1 for a smooth 
start. The benefit here is that 
when the rotor is aligned 
properly, the motor will consume 
significantly less current during 
start-up than it would if the rotor 
had not been aligned.   
 

Figure 27.  Aligning the rotor using Vp, Wn, Un coils.  
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Summary:  
 
We have now completed Part 1 of this seminar. We have covered BLDC fundamentals, the 120-degree 
commutation sequence and six step-method of rotating the motor, the trapezoidal control algorithm, the 
Hall-sensor based method of speed control, and the competing back-EMF based method. We have also 
compared the advantages and disadvantages of these speed-control methods. In the Part-2 seminar we will 
expand our discussion to cover 180-degree modulation, sinusoidal implementation, open-loop V/f control, 
and closed-loop control, including CPU bandwidth analysis. We will also provide a quick overview of 
vector control.   
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Abstract   
Brushless Direct Current (BLDC) motors, also known as permanent magnet motors, are used today in many 
applications. A new generation of microcontrollers and advanced electronics has overcome the challenge of 
implementing required control functions, making BLDC motors more practical for a wide range of uses. 
 
This two-part seminar covers BLDC motor control fundamentals and implementation techniques. Part 1 
discusses 120-degree trapezoidal control with and without sensors, while Part 2 covers 180-degree sine 
wave modulation and V/f open-loop and closed-loop control with sensors. Topics discussed include 
interrupt handling for pulse width modulation (PWM) generation and sensor processing with performance 
measurement for CPU bandwidth usage. Implementation of a speed profile (speed vs. time) and its 
interface with the interrupt handler are also described. 
 
Part 2: Introduction   
 
In Part 2 of this seminar, we build on the fundamentals of BLDC motor operation and control covered in 
Part 1, turning our attention from six-step 120-degree modulation to an examination of 180-degree 
modulation. We also discuss sinusoidal modulation and look at an example of code used to generate a sine 
wave. We then discuss open-loop V/f control and closed-loop control. The seminar ends with an overview 
of vector control.   
 
180-degree modulation  
 
Recall that for six-step 120-degree modulation, power switches are turned on and off so that the current 
passes through two coils, as shown in Figure 28. Every 60 degrees we switch connections so that the 
current flowing from coil U to V now flows from U to W. This switching effectively keeps the V coil free 
of current for the next 60 degrees. During this period when no current flows in the V coil, the back-EMF 
signal generated by the rotor’s magnetic field can be detected in the V coil. The progression of six-step coil 
energization is shown in Figure 29.   

 
Figure 28.  Six steps of trapezoidal control method.   
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Figure 29.  Progression of six coil energization steps.  
 
Another way to understand 120-degree modulation is to look at the timing of Up, Vp, and Wp during 
electrical rotation. Each phase is energized for a time that corresponds to 120 degrees of electrical rotation. 
Phase Up is on for 120 degrees; Vp is on for the next 120 degrees; and finally Wp is on for the rest of the 
cycle. Lower switches are turned on and off to provide the path for current flow. In this scheme, there is a 
period of 120 degrees of rotation in which, for example, phase U does not create any torque on the rotor. 
Effectively each coil is utilized at only 2/3 of its capacity.  
 
However, if we could use each coil for the entire electrical period, we would be able to generate more 
torque on the rotor. So, rather than turning on Up for 120 degrees of rotation and then waiting another 60 
degrees before turning on Un, what if we could keep Up on for an entire 180 degrees of rotation with no 
long wait period before turning Un on? This modulation scheme is viable, but only if we provide enough 
transition time between the act of turning Up off and turning Un on to protect the switches from a short 
circuit. If we turn Un on before Up has been properly turned off, we risk creating a short circuit that can 
explode the power switches. The transition time required to safely implement this 180-degree modulation 
scheme is known as dead time.   

 
Figure 30.  180 Deg modulation scheme using three coils at a time.   
 
Effectively with 180-degree modulation we are passing the current through all three coils at all times, 
inserting a small transition time to protect the power switches each time the direction of the current is 
switched.  For the first 60 degrees, current flows in from Up and from Wp and exits the Vn coil as shown in 
Figure 30. The Wn coil is no longer free, as it now also passes the current. Next we switch Wp and Wn so 
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that the current direction changes, and for the next 60 degrees, current flows in from Up and exits the Vn 
and Wn coils. We continue in a similar fashion for the next four steps. In this way, the coils are utilized 
fully at all times to create torque on the rotor. Note that the ability to detect back-EMF is greatly 
diminished because of the short dead time. Generally we say that with 180-degree modulation, there is no 
back-EMF detection. This statement is correct for all practical purposes. The dead-time requirement also 
affects the MCU timers, as a dead-time register must be used to insert the proper delay before each phase 
can be turned on.  
 
We can contrast 120-degree modulation with 180-degree modulation as follows. The 120-degree technique 
uses only 2/3 of the electrical period to create torque and rotate the motor, whereas the 180-degree 
modulation scheme uses the entire electrical period. Torque created using 120-degree modulation contains 
ripples, because torque is applied to a coil for the first 120 degrees, is not applied for the next 60 degrees, 
and then is applied again for 120 degrees. However, because 180-degree modulation does away with the 
long (60-degree) wait period, the current flow is smooth and torque ripples are mostly eliminated. 
Moreover, 180-degree modulation makes possible various other modulation strategies such as sine 
modulation, quasi-sine modulation, and space vector modulation.  
 
Let’s consider the example of a timer with a dead-time register. The Renesas M16C/Tiny series 
microcontroller unit (MCU) has a special 3-phase timer, shown in Figure 31, which inserts the dead time 
required between turning the Up and Un power switches on and off. Timer channel B2 generates the carrier 
frequency and Timer channels A1, A2, and A4 are used with buffers to set the pulse width modulation 
(PWM) values for on and off counts. The first buffer holds the value that turns on the output when a 
compare match occurs. The second buffer holds the value to turn off the output on a compare match. When 
the dead-time register is programmed with a value, two internal signals—P for Up and N for Un—are 
modified by inserting the dead-time count in the compare match. Then, negative signal N is turned off for 
Un, dead time is inserted, and positive signal P is turned on for Up. Thus our internal timer hardware makes 
sure that the upper and lower switches are protected properly.  

 
Figure 31.  M16C 3-phase timer automatically inserts required dead-time.  
 
The dead-time register is programmed once at the beginning of operation, and the count value is dependent 
on the characteristics of the power switches. Two internal buffer bits—Di0 and Di1—are programmed to 
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generate a specific high or low output on the compare match. The compare-match output is high if the bits 
Di0 and Di1 are set to 0,1. The output is low if these bits are set to 1,0. For the second buffer, the bits are 
DiB0 and DiB1. By changing the bits properly, a center-aligned or edge-aligned PWM output can be 
generated easily.  Since each channel has a set of buffer bit settings, designers can change the behavior of 
any channel at will.   
 
The MCU’s 3-phase timer is quite versatile in its ability to generate various modulation schemes. It can 
generate 180-degree, sine wave, quasi-sine wave, space vector, or any custom modulation scheme. It can 
also generate 120-degree modulation with 60-degree or 120-degree modulation time. It can modulate the 
upper switches only, the lower switches only, both switches together, or one at a time every 60 degrees.  
Because the phase timer has dual buffers—the first buffer for the rising-edge compare match and the 
second buffer for the falling-edge compare match—dual sampling of the angle is possible for better sine-
wave generation.   
 
Sine-wave generation  
 
Using the MCU’s 180-degree modulation capability, we can generate a sine-wave output easily. In this 
case, instead of a 360-degree electrical cycle period, we employ a period called the carrier-wave-frequency 
period. During this period, we calculate sine of the angle and set the PWM accordingly. The basic steps to 
generate this sine-wave output, illustrated in Figure 32, are as follows: 
 

1. Select a carrier wave frequency fc such as 20kHz or 16kHz.   
2. Select the voltage V0 and frequency f of the output wave.  
3. Compute the phase angle Θ of the voltage at every carrier-wave period.  
4. Look up the corresponding sine value from the table.  
5. Multiply the sine value with the modulation ratio to generate the PWM value.   
6. Transfer the PWM values to the registers.   

 
Figure 32. Basic steps of sinewave generation.  
 
The basic formulas are listed below.   
 

ΔΘ = 2Πf / fc  (computed once for frequency f) 
Θ(n) = Θ (n-1) + ΔΘ 
U = V0 Sin (Θ (n)) 
V = V0 Sin (Θ (n+240)) 
W = V0 Sin (Θ (n+120)) 

 
Let’s examine in detail the steps for sine-wave generation. Three values are required—the carrier frequency 
fc, the sine wave frequency f, and the voltage level V0. We will use fc =10kHz, f =50 Hz, and V0=100 % 

Desired Voltage V0 and Frequency f  

Carrier wave (Frequency fc )

U  = V0 sin θ
V  = V0 sin (θ+120°) 
W = V0 sin (θ+240°)

θ(n)  = θ(n-1)+Δθ
Δθ =  2πf / fc

Desired Voltage V0 and Frequency f  

Carrier wave (Frequency fc )

U  = V0 sin θ
V  = V0 sin (θ+120°) 
W = V0 sin (θ+240°)

θ(n)  = θ(n-1)+Δθ
Δθ =  2πf / fc



of the possible DC bus voltage. The maximum voltage level is Vdc and the minimum voltage is zero, thus 
implying  

Vmax = Vdc and Vmin = 0.  
 
The sine wave is generated from a center value to a maximum value V0 and then to a minimum value -V0. 
Therefore the center value is Vdc/2 computed as  

(Vmax + Vmin)/2 = ½ Vdc.   
 
Note that V0 (at maximum 100%) is also ½ Vdc. In our case, Vdc = 160 volts; therefore, V0 = 80 volts and 
the center point is also 80 volts. The sine wave is now calculated as  

½ Vdc + ½ Vdc * Sin (Θ).   
 
We can write this as,  

Vpwm = ½ Vdc + ½ Vdc * Sin (Θ). 
 
We will get Vpwm = Vmax at 90 degrees and Vpwm = Vmin at 270 degrees as expected.   
 
The angle traversed every carrier frequency is now  

ΔΘ = 2Πf / fc  = 360 * 50 / 10000 = 360 / 200 = 1.8 degrees.  
Also, 

Δt = 1/fc = 1/10000 = 100μs period,   
Max PWM count = Δt * counting frequency, and  
PWM max = Δt * 20MHz = 100 * 20 = 2000. 

 
Because we are using a center-edged PWM generation timer, the timer’s B2 channel is ½ of this value. The 
timer B2 period is 1000 counts, and the first PWM for the rising edge is  

PWM1 = 500 + 500 * Sin (Θ).  
We can compare this to  

½ Vdc + ½ Vdc * Sin (Θ). 
 
The second PWM for the falling edge is  

PWM2 = 1000 – PWM1.   
At 90 degrees, the sine of the angle is 1. We must therefore get the maximum number of counts.  At 270 
degrees, the sine of the angle is -1 and we must get the minimum number of counts.   
 
In summary, to generate a sine wave, we begin with Θ=0 and then set the timer channel B2 to a value of 
1000 counts for the count down. We set the interrupt at every second underflow, which is the completion of 
the triangular center-edge waveform. In the interrupt routine, we compute the angle, look up the sine table, 
and multiply by the voltage value to compute the PWM1 value. We check this value for maximum and 
minimum bounds and then compute PWM2. We will examine the code for this procedure in the next 
section.   
 
You probably noticed that we performed a sine-table lookup in generating PWM. How do we create this 
sine table?  Since the MCU performs all calculations in integer arithmetic, we must use a scaled value for 
the sine table. We also must use a scaled value for the voltage. Using Microsoft Excel, we can create a sine 
table with one-degree resolution similar to the one in Figure 33. We start at zero degrees and advance the 
table by one degree for each entry, using the sine of the average angle for the index. All sine values are 
computed in floating values, as shown in the third column. We then convert these values to 2^13 format—
that is, value 1 is represented by 2^13 = 8192. Next we take the floor value of the calculation to get the sine 
value in integer format. For the U value, we continue with the angle computation, and for the V and W 
values, we add a 240-degree and 120-degree offset, respectively, for the lookup process. Then we plot the 
three values to see if correct sine waves result.   
 
 
 



 

 

 
Figure 33.  Sine wave table and its graph with integer values.   
 
Several important points should be noted. Applying a dynamically changing PWM voltage to the stator 
results in sine-wave voltage and current passing through the stator. This action requires a carrier frequency.  
We select the value of the carrier frequency based on how precise and accurate the applied sine wave must 
be and how large a table our MCU’s memory can handle. Typical carrier frequency values falls in range of 
2 to 20kHz. However, many designers want to avoid the audible frequency range, so they select values of 
or above 16kHz.  
 
Because a single PWM signal cannot create negative current, a lower power switch is used to enable the 
current to flow in the opposite direction. Positive and negative PWM output switches are required. To 
protect these switches, dead time must be inserted between positive and negative signals, as we have 
discussed previously. Hardware-based dead time is more accurate than software based dead time and 
reduces CPU bandwidth usage.  
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With sine-wave implementation, we can improve control performance and efficiency. However, this 
process requires a true 3-phase timer unit with dead time insertion for proper operation. Sine-wave 
modulation is compared to trapezoidal modulation in Figure 34.   
 

 
Figure 34.  Comparison of 120 deg trapezoidal and 180 deg Sine wave modulation.  
 
 
Sine-wave generation example  
 
Now let’s consider how to code a device for sine-wave generation. We begin with a motor-control 
reference platform, shown in Figure 35. This platform consists of two boards—a Starter Kit Plus (SKP) and 
a Power Board. A Renesas M16C/28 series MCU, an LCD, and LEDs are mounted on the SKP. The power 
board has AC-to-DC conversion and an integrated power module (IPM) with six power switches plus 
drivers built in. The IPM uses a heat sink, as Figure 35 shows.  
 

 
Figure 35. Power and MCU board for controlling the motor.  
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To measure the motor position and current in the U and V phases, the power board provides a Hall-sensor 
input, an encoder input, and two DCCT devices. Three back-EMF resistor ladders plus a fourth resistor 
ladder for measuring the Vbus are also implemented on the board, too. A precision shunt resistor on the 
low voltage side is also included to measure the overall current or to perform a one-shunt current detection 
technique for current measurements. Together these elements allow us to run various BLDC algorithms.  
 
Our test set-up consists of a Bodine BLDC motor with two pole pairs, as shown in Figure 36.  The MCU is 
used to generate a sine-wave PWM series of various frequencies, and the current waveforms are captured 
by the DCCT sensors. (You can view the entire code for the interrupt in Appendix A.) The basic sine wave 
is generated as follows.   
 

 
Figure 36.  Test set-up with Bodine motor.  
 
When the interrupt is entered, the MCU’s firmware checks the validity of the new frequency update. If the 
update is true, the new frequency is commanded and the delta theta for angle computation is updated. Delta 
theta is presented in 2^6 format, so delta theta = 64 means 1 degree, and delta theta = 96 means 1.5 
degree. The firmware then integrates the total angle, denoted as sinpt_sum, by adding the delta theta value. 
If the resulting sinpt_sum is greater than 360 degrees ( 23040 using 2^6 format), then roll-over has 
occurred and the sinpt_sum must be corrected to a new value by subtracting 23040. Then, sinpt_sum is 
scaled back by a 2^6 value to get an index in the sine table. This index is called sin_pt in our code.   
 
The constants C4_DAT and C2_DAT in our code are based on carrier frequency and represent ¼ and ½ 
counts for the carrier-frequency time period. For example, assume that the carrier frequency is 10kHz.  
Thus, the time period is 100μs. Counting at 20MHz, it represents 2000 counts.  It follows that C4_DAT = 
500 and C2_DAT = 1000 counts.  Using the C4_DAT constant, three PWM values are computed, as shown 
in Listing 1.   
 
As you can see, sin_pt is used as an index for the sine table. Voltage is represented by the variable tqdat, 
and the entire multiplication is scaled by 2^19 because sine values are given in 2^13 format and voltage 
values in 2^6 format. For V and W values, offset_v and offset_w variables are used.  To rotate the motor 
forward, V and W must have offsets of 240 and 120, respectively.  To rotate the motor in reverse, V and W 
must have offsets of 120 and 240. Notice that this procedure is not unlike running the six-step state table in 
reverse order.   
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Listing 1 
 
/*U-phase pwm command value = carrier/4 - (sinN° × (torque command value × carrier/4))*/ 
pwm_u_w = C4_DAT - (signed int)(((signed long)sin_tbl[sin_pt]*(signed long)tq_dat)>>19); 
 
/*V-phase pwm command value = carrier/4 - (sinN° × (torque command value × carrier/4))*/ 
pwm_v_w = C4_DAT - (signed int)(((signed long)sin_tbl[sin_pt+offset_v[direction]]*(signed 
long)tq_dat)>>19); 
 
/*W-phase pwm command value = carrier/4 - (sinN° × (torque command value × carrier/4))*/ 
pwm_w_w = C4_DAT - (signed int)(((signed long)sin_tbl[sin_pt+offset_w[direction]]*(signed 
long)tq_dat)>>19); 
 

 
Next, PWM values for U, V and W are checked for PWM_MIN and PWM_MAX to protect the timer 
operations, and code is developed to reduce the execution time. A PWM2 value is computed using the 
constant C2_DAT, again to minimize the execution. Finally the six timer registers are loaded, with ta4 and 
ta41 representing the PWM1 and PWM2 for U phase. Since we have two buffers, we can integrate the 
angle for the first-half period and use the first index for PWM1. Then we can integrate the angle for the 
second-half period and use that index for PWM2. Although this method doubles the number of sine 
lookups and thus increases execution time, it also provides a higher-resolution sine wave.  

Figure 37.  Current wave forms using DCCT sensors at 40 and 60 Hz sinewave.  

Figure 38.  PWM output with 10kHz filtering.   
 
As Figure 37 shows, we capture the current waveforms at 40Hz and 60Hz using DCCT sensors with 10kHz 
filtering. As Figure 38 shows, we capture the PWM output from the MCU with 10kHz filtering to view the 
PWM. We see that the DCCT current waveforms and PWM output are sinusoidal and represent proper 
fidelity.   
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V/f open-loop control 
 
Voltage-over-frequency (V/f) open loop control is based on three assumptions: 

1) Motor impedance increases as the frequency increases.   
2) A fixed amount of current is most desirable.  
3) Motor speed can be increased easily by increasing the frequency and related voltage.   

 
Typical V/f control is run from table-based values of for voltage (the tqdat variable in our code) and 
frequency (delta theta variable in our code), as illustrated in Figure 39. Notice that low frequency values 
require lower voltage values. Generally a motor has a minimum speed called ωmin and an operational speed 
ωops at which the voltage reaches 100%. When the commanded frequency increases beyond the Wops 
value, the only possible control is to increase the applied synchronous frequency while holding the voltage 
level steady at 100 %. Table values from Wmin to Wops, as plotted on the chart in Figure 39, are 
determined in the laboratory by observing the current, which is generally kept constant. When the 
frequency increases beyond the Wops value, the current value decreases. Most of this decrease in current 
comes from the generation of back-EMF current by the rotating magnetic field. At Wmax speed, current 
becomes minimal. Generally we do not drive the motor beyond this maximum speed.   
 

 
Figure 39.  V/f open loop control with current behavior and operational points.  
 

 
Figure 40.  Firmware flow for open loop V/f control without any speed feedback.  
 
V/f open-loop control, illustrated in Figure 40, starts with a desired motor speed. Firmware looks up the 
table values to set the command frequency and pre-determined voltage level. The timer is initialized and 
three sine waves are generated at the commanded frequency and voltage level. An interrupt routine handles 
the sine wave generation using PWM values. No feedback is given regarding the motor speed; we assume 
that the motor is running at the speed desired. This type of control is known as open-loop control—no 
closed loops whatsoever are used. Generally, Wmin and Wmax depend on the motor plus load and Wops is 
determined by the system configuration.  
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This control method has two main advantages. First, it requires no measurement of current or speed. 
Second, it uses a simple algorithm that is easy to implement. With some experimentation, we can rotate any 
BLDC motor without knowing the details of its parameters. This simplicity, however, also has its 
disadvantages. Without feedback, we do not know at what speed the motor is running. If the load is 
variable, the motor speed will be variable also. If the system requires some form of speed control, a speed 
sensor can be added. However, this moves us to a closed-loop control system. 
 
The open-loop method provides no reading of the current, so an overcurrent condition is possible. To 
protect against this condition, a shunt current resistor can be used to measure the steady-state current. This 
technique gives some feedback regarding speed as well as overcurrent. It may also give some feedback 
about the load on the motor. Adding a shunt current resistor is relatively easy and again moves us to a form 
of closed-loop control.   
 
Open-loop implementation example 
 
In Figure 41 we have implemented open-loop control to show a profile with three-speed motor operation. 
We start the speed profile at 5 seconds by commanding a low speed of 2400 RPM. We use a ramp in speed, 
shown in Figure 42, to reach the commanded speed and we also use a ramp in voltage. We begin generating 
a sine wave with a commanded value of 1200 RPM (20Hz) and voltage (torq) value of 50% (32), because 
voltage is scaled 100% using a 2^6 format. During the interrupt processing, we create a “near zero” flag 
when the angle (or sin_pt) is near zero. In the main routine, when the near zero flag is true, firmware 
changes the commanded speed by a small amount—for example, 120 RPM—and also increases the torq 
value by 1. Based on the speed and torq start and stop values, different ramp profiles will be generated.  
 

 
Figure 41.  Speed profile with three different speed values as a function of time.  
 

 
Figure 42.  Speed ramp from 40 to 100 Hz as a function of time. 
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The motor is run at low speed for 60 seconds and then the speed is increased to a medium value of 3000 
RPM. The motor reaches medium speed using the same ramp module. Then the motor is run for an 
additional 60 seconds and the commanded speed is increased to its high speed value of 3600 RPM. We run 
the motor for 60 seconds at high speed, then slow it down to 1200 RPM and stop it. We wait for 5 seconds, 

change the index offset, and start the motor 
again. This time we run the motor in 
reverse—an important step, because we want 
to be sure that the motor has this ability.   
 
Within the interrupt code, we use a port pin to 
output high (1) and low(0) state. When we 
enter the interrupt processing module, we 
output high (1) state on this port pin. When 
the interrupt processing is complete, we 
output low (0) state on the pin. In this way we 
can measure the CPU bandwidth, as Figure 
43 shows. The rising-edge to rising-edge time 
is our carrier-frequency time period, and the 
rising-edge to falling-edge time is the time it 
takes the firmware to execute the interrupt-
processing routine.  
 

 
Figure 43.  CPU bandwidth measurement for open loop sinewave.   
 
At a 16kHz carrier frequency, the measured interrupt time is 62.60μs, whereas the calculated value is 
62.50μs. Our result is within the measurement error. The execution time is measured as 33.56μs, which 
gives us a CPU bandwidth usage over 50%. Thus more than half of the available CPU processing time is 
used in this interrupt. However, interrupt processing is the only time-critical task that the CPU has to do in 
this open loop implementation. Although not ideal, our open loop implementation is reasonable because it 
leaves about 50% of the CPU's time for performing other non-critical tasks. For closed loop, we will need 
to add other time critical tasks that will require us to reduce the CPU bandwidth for sine wave generation 
task.   
 
Optimizing the sine code 
 
Our next step is to optimize the code for sine wave PWM execution time for three reasons.  1) If we want to 
increase the carrier frequency from 16kHz to 20 or 25kHz, then, the interrupt time is 50 and 40 μs 
respectively.  In this case, the CPU bandwidth usage will be 66% and 80% which is generally not 
acceptable. 2) We want to add time-critical speed and current measurement tasks,  and 3) We want to add 
interrupt driven closed loop control code, which is a time-critical task also. Therefore, it is better to reduce 
the Sine wave PWM execution time early.  To improve performance, we’d like to reduce the CPU 
bandwidth usage from its current level of over 50%. First we measure individual times for each PWM 
computation, including table lookup and long multiplication. We are looking for ways to avoid table 
lookups because they take a lot of time. A significant amount of time is also being spent in MAX-MIN 
checking. If we can avoid some of this computation, we will save more CPU bandwidth. After detailed 
analysis, we implement the following changes in our code: 
 

1. Instead of computing the sine value for W index, we simply use the sum of the U and V sine 
values. This is true for one case only: when all three sine waves are 120 degrees apart. If the 
index difference between U, V, and W is not 120 degrees, then such replacement cannot be 
made. Since this technique is applicable to our implementation, we now save the time 
required for table lookup, long multiplication, and scaling.   

 



2. We study the upper and lower bounds of the table as well as the torq voltage variable in our 
code and guarantee by design that the PWM values generated by our equations will not 
require MAX-MIN checking. Then we eliminate these checks. This process saves more CPU 
bandwidth but requires that we spend time reviewing the entire code for such a guarantee. 

 
3. Finally, after making sure that we have generated a proper sine wave, we turn on the compiler 

optimization flag.  
 
The optimized code is shown in Listing 2. Running this optimized code, we measure the CPU bandwidth 
again for comparison. As Figure 44 shows, the CPU interrupt-processing time is now 14.31μs, down from 
33.56μs required for the original code. This is a reduction of more than 50% and thus CPU bandwidth 
usage is significantly lower. For a 16kHz carrier frequency, interrupt time is now 62.5μs, which translates 
into 22.9% CPU bandwidth usage versus 53.7% with the original code. These improvements give firmware 
designers the freedom to add time-critical sensor measurement and closed loop control tasks that are useful 
in motor control. 

 
Figure 44.  CPU bandwidth for optimized code.   
 
 
 



 
 
Closed-loop scalar control  
 
Since we have optimized the sine-wave implementation, let's now investigate closed-loop control using a 
scalar formulation. Closed-loop control requires some type of position sensor that can measure speed, as 
shown in Figure 45. We can get the required position feedback from a single Hall-sensor that gives one 
pulse per mechanical rotation, a tachometer sensor that outputs eight pulses per mechanical rotation, or 
from a Hall commutator that gives six signals per electrical rotation.  
 
An input-capture function coupled with the proper counter provides two measurements: elapsed time from 
one input capture to a second input capture, and change in rotor position. Both measurements together 
provide the speed measurement. As we can infer from Figure 45, the rotor position can be detected at every 
input capture, and using the previous input capture data, the speed of the rotation can be computed.  
 
 

Listing 2 
 
#pragma INTERRUPT/B tb2_int 
void tb2_int(void) 
{ 
 static unsigned int dTheta; 
#ifdef TIME_PWM 
     p7_0 = 1; 
#endif 
 if(Update) { 
  dTheta = DeltaTheta; 
  Update = FALSE; 
  } 
     sinpt_sum = dTheta + sinpt_sum; /*Sine pointer sum .. sine skip-read value + sine 
pointer sum */ 
     if(sinpt_sum > 23040) {      /*Sine pointer sum max. value? 23040 = 360° × 64 */ 
   NearZero = TRUE; 
        sinpt_sum = sinpt_sum - 23040;    /*Sine pointer sum max value revision sin*/ 
  } 
     sin_pt=sinpt_sum >> 6;             /* sine pointer sum / 64 */ 
/*U-phase pwm sine value =  (sinN° × (torque command value × carrier/4))*/ 
     pwm_u_w = (signed int)(((signed long)sin_tbl[sin_pt]*(signed long)tq_dat)>>19); 
 
/*V-phase pwm sine value =  (sinN° × (torque command value × carrier/4))*/ 
     pwm_v_w = (signed int)(((signed long)sin_tbl[sin_pt+offset_v[direction]]*(signed 
long)tq_dat)>>19); 
/*W-phase pwm Sine value = (sinN° × (torque command value × carrier/4))*/ 
  pwm_w_w = -(pwm_u_w + pwm_v_w);// - C4_DAT; 
/*  deleted the checks on MAX and MIN  -------------------------------------*/ 
     ta4  = (unsigned int)(C4_DAT - pwm_u_w); 
     ta41 = (unsigned int)(C4_DAT + pwm_u_w)); 
     ta1  = (unsigned int)(C4_DAT - pwm_v_w); 
     ta11 = (unsigned int)(C4_DAT + pwm_v_w)); 
     ta2  = (unsigned int)(C4_DAT - pwm_w_w); 
     ta21 = (unsigned int)(C4_DAT + pwm_w_w)); 
 
#ifdef TIME_PWM 
     p7_0 = 0; 
#endif   ---------------------------------------------------------- 



 

 
Figure 45.  Closed loop speed control using position sensor and input capture timer.  
 
Since we obtain the desired speed or speed command from a pre-set profile, it is easy to implement a 
proportional-integral (PI) speed regulator as shown below.   
 

Δω1 = Kp*(ωr* - ωr) + Ki * Σ (ωr* - ωr) 
Where   ωr*  =  speed command, 
 ωr  =  speed measured,  
 Kp = proportional gain, 
 Ki  = integral gain, and 
 Σ is the sum over pre-determined range.  
 

Then, the new speed or frequency ω1 for sine-wave generation is ω1 = ω1p + Δ ω1, where ω1p is the 
previous value of the same parameter.  
 
 A similar algorithm is deployed for the new voltage value of the sine wave. Thus, two parameters are 
computed for each speed measurement: a new sine frequency and a new sine voltage. In many designs, 
voltage calculations are not implemented because the motor at that point is already running at the 
operational voltage and there is no need to change it. In such cases, eliminating the voltage calculations 
saves CPU bandwidth.  
 
Another form of control is based on the proportional-integral-derivative (PID) algorithm. In this method, a 
derivative term is added to the equation using the change in the error term.   
 
Δω1 = Kp*(ωr* - ωr) + Ki * Σ (ωr* - ωr)  + Kd * { (ωr* - ωr) - (ωr* - ωr)p }   

Where  (ωr* - ωr)  = error in speed,   
 (ωr* - ωr)  = previous value of error, and 
 Kd  = derivative gain.  

 
Other terms remain the same. This method offers excellent control of acceleration and braking and is 
preferred by many experts. Disadvantages of PID, however, are convergence time and stability of the 
control. Depending on the gain values, the PID algorithm may react to small changes and continually 
perturb the system performance. Based on his experience, the author prefers to implement PI type control.   
 
Hall processing 
 
Let’s take a look at the sensor processing steps and CPU time necessary to implement closed-loop scalar 
control. We use a single-pulse-per-rotation Hall-sensor for this implementation. A free-running, down-
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counting timer is started during initialization. Then, at every Hall interrupt, this timer is stopped and the 
counts are moved into a variable called New_Meas. The timer is reset or reloaded and started again. A flag 
called new_data is set for the next task.   
 
When the new_data flag is set, the process_hall module computes the speed. The module checks for 
conditions such as underflow or overflow and then calculates speed, based on one pulse per rotation. If we 
have implemented the type of Hall-sensor generally used for commutation signals, then speed is computed 
based on 60 degrees of electrical rotation. Next, the speed computation is converted into mechanical speed 
using proper transformation based on the number of pole pairs. The new_data flag is cleared for the 
measurement task and a flag is set for the speed regulator, which we call the velocity regulator. Once the 
new flag has been set, the velocity regulator processes the new speed measurement and creates new values 
for frequency and voltage using one of the formulas previously described.  
 
Running closed-loop control of our BLDC motor using Hall sensors and other sensors gives preliminary 
measurement results such as those shown in Figures 46. The execution times for the two tasks are as 
follows: 
 

Process_halls         16μs every Hall interrupt 
Velocity_regulator  10μs every speed measurement  every Hall interrupt 

 
Figure 46.  CPU bandwidth measurements for sensor measurement and closed loop speed control.   
 
Now we’ll analyze CPU bandwidth usage for this closed-loop control. Sine wave PWM interrupt 
processing time is 15μs. At a 16kHz carrier frequency, this time is 16000*15, which gives an interrupt-
processing time of 240000μs. This time period, which is required to generate a proper sine wave at a given 
frequency, represents nearly 24% of the CPU bandwidth at the 16kHz carrier frequency. Note that the sine 
wave PWM interrupt-processing execution time is not dependent on the speed. This is good news, because 
firmware designers will not have to calculate CPU loading every time the speed changes. The CPU usage 
turns out to be nearly constant at every speed.   
 
Our execution time for speed measurement or Hall process is 16μs. Let’s use the case in which one Hall 
signal is sensed and processed per rotation. Because the number of times Hall processing must be 
performed depends on the speed of the motor, the processor bandwidth required for speed measurement 
will also be speed dependent. We will create a table, called Table IV, for two different speeds. Note that 
velocity- or speed-regulator execution time is 10μs, and is also speed dependent. This measurement also 
has an entry in our table. We compute the CPU bandwidth for two speed values—100Hz and 200Hz 
(indicating that each task must be processed 100 and 200 times). As shown in the last column of Table IV, 
the CPU bandwidth increases very slightly, from 24% to 24.2% and 24.5%. That is not much of an increase 
at all.   
 



Table IV.  CPU Bandwidth calculations for one sensor measurement 
and one control processing per mechanical rotation 

 
Speed (RPM) Speed (Hz) Hall Process 

time in μs 
Velocity regulator 
time in μs 

Total time  

6000 100 1600 1000 242600μs or 
0.24 seconds 

12000 200 3200 2000 245200μs or 
0.245 seconds 

 
We also want to calculate the CPU bandwidth for a case in which typical Hall commutation signals are 
used for speed measurements. Our motor has four pole pairs, and thus four electrical rotations per one 
mechanical rotation. Since there are six commutation signals per electrical rotation, the number of Hall 
processes has now increased by a factor of 24. We average the speed measurements for one electrical 
rotation and apply the velocity regulator once per electrical rotation or four times per mechanical rotation. 
The corresponding CPU bandwidth calculations are summarized in Table V. 
 
In this case, sine-wave generation requires the same bandwidth as before, while speed measurement and 
speed control is done more often and therefore require more bandwidth. However, the increase in CPU 
bandwidth is still not much: bandwidth usage increases from 24% to 28% and 32 %, which is an increase of 
only about 4% for every 6000 RPM increase.  
 
It’s important to point out that we made our calculations to show how the CPU bandwidth usage increases. 
The designer must still decide how to set the speed measurements and control-loop timings. If other tasks 
will be impacted by the 4% bandwidth increase, perhaps they can be scaled back. This kind of tweaking 
may have an impact on speed accuracy, but that is what optimization is all about. As we saw previously in 
Table IV, we can always perform speed measurement and speed control tasks only once per mechanical 
rotation to reduce the CPU bandwidth.  
 

Table V.  CPU Bandwidth calculations for 4-pole-pair motor. 
(24 times sensor measurement and 4 times control processing per rotation.) 

 
Speed 
(RPM) 

Speed 
(Hz) 

Hall Process time 
24 times per 
mechanical rotation 

Velocity regulator 
time in μs 
4 times per 
mechanical rotation 

Total time  

6000 100 38400 4000 282400 μs or 
0.28 seconds 

12000 200 76800 8000 324800 μs or 
0.32 seconds 

 
V/f open-loop control versus closed-loop scalar control 
 
We have discussed in detail the methods for V/f open-loop and closed-loop-scalar control and evaluated the 
CPU bandwidth requirements for each. Now let’s compare features and benefits of each type of control 
method. As the name implies, V/f open-loop provides no feedback regarding speed, while closed-loop 
control performs speed measurement using some sort of position sensor—for example, commutation Hall-
sensors; a single Hall-sensor; an encoder with A, B quadrature and Z zero synch pulses; or a tachometer 
with multiple pulses per rotation.  
 
In both the open- and closed-loop methods, the MCU generates sinusoidal modulation to the inverter 
drivers. However, speed-control accuracy differs significantly. Because the open-loop method does not 
provide either feedback correction or control of the speed, the accuracy is poor. With closed-loop scalar 
control, on the other hand, the feedback on actual speed and the corrections made to the frequency and 
voltage generation result in highly accurate speed control. The motor rotates very close to the commanded 



speed in scalar control. No such expectation is possible in open-loop control, though, which cannot even 
tell us at what speed the motor is running. 
 
Torque control is not applied in open-loop control, and it exists only indirectly in scalar control.  
 
In terms of MCU resources, both control methods require a three-phase timer unit with dead-time insertion 
capability. Open-loop control requires no further resources except monitoring for high current and high 
temperature conditions that would call for emergency shutdown. In scalar control, however, the MCU must 
have an additional timer to measure the time between two position pulses, as well as input capture with 
interrupts. The V/f open-loop control method is relatively easy to implement at minimal cost, while the 
need for sensors makes scalar control somewhat more expensive.   
 
Vector control 
 
Another method worth discussing is vector control. The detailed formulation of this method to control the 
torque and flux in PMSM was originally achieved by Jahns, Kliman, and Neumann [1] in the mid-1980s. 
Additional work has been done by many authors, and you will find more information and explanation in 
references [2,3,4]. Here we will simply summarize the concept and compare it to the 180-degree V/f open-
loop and closed-loop scalar control methods previously discussed.   
 
When we examine the torque equation for a brushless DC motor, we realize that the equation is really a 
vector formulation with the vector product of the current and magnetic fields shown on the right-hand side: 
 

T  I x B, where current and magnetic field are vector quantities.   
 
If we formulate a rotor frame that has a d-axis parallel to the north-south line and a q-axis perpendicular to 
the d-axis, as illustrated in Figure 47, we can actually convert the stator currents in the rotor frame. We then 
realize that the current along the d-axis creates pure flux, whereas the current along the q-axis creates pure 
torque. Denoting these two currents as Id and Iq, we can say that our control algorithm must control both 
these currents to maintain proper flux and proper torque in the system. We know that speed is directly 
related to torque, and torque is related to the q-axis current. Therefore, we must create a reference q-axis 
current to maintain the speed. Then we can control the q-axis current through transformation of our axes. In 
this way we convert the single-variable speed control into control with more variables—speed, d-axis 
current, and q-axis current—and we use a vector formulation to compute the quantities that we need to 
control. Hence we call this method “vector control.” 
 

 
Figure 47.  Stator frame to rotor frame transformation for vector control.   
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Now let’s take a look at the detailed steps necessary for vector control. As Figure 48 shows, a profile 
module gives the speed command to the control algorithm at some point in time. On the right hand side, a 
control function outputs commands for the inverter, which is connected to the motor. This configuration 
has two current sensors to measure the phase U and phase W currents. The sensors are connected to the 
ADC on the MCU. The motor also has an encoder mounted on its rotor to give the quadrature pulses A, B 
and also the zero synch pulse Z. All three signals are sent to the input-capture and timer/counter peripheral 
for speed measurement.   

 
Figure 48.  Vector control flow diagram.   
 
At every carrier-frequency interrupt, three PWM signals are generated. While all three PWM signals are 
applied, the system measures two currents by triggering the ADC channels. During the next interrupt 
execution, these currents are then transformed from stator U, V, and W axes to d-q axes using matrix 
multiplications that involve the rotor angle q at that time. The rotor angle is measured by reading the A,B 
pulses and converting this reading into a proper angle. The control system’s firmware is greatly helped if 
the MCU has a hardware timer with input capture and continuous counting of A,B pulses.  
 
Based on the rotor position θ, stator currents are transformed in d-q axes currents as we have noted. The 
speed measurement is fed into the auto speed regulator (ASR), shown in Figure 48, which generates the 
reference q-axis current required to maintain the commanded speed. This reference q-axis current and 
measured q-axis currents are fed into the auto current regulator (ACR) to create q-axis voltage to be applied 
to the next PWM.  
 
The reference current in the d-axis is maintained at constant level to maintain proper flux in the stator. This 
reference d-axis current and the measured d-axis currents are fed into a second ACR to create the d-axis 
voltage. Corrections are made to the voltage calculations according to the number of pole pairs and the 
reference currents in the d and q axes. When the final values Vd and Vq are computed, they are 
transformed from the rotor frame to the stator frame using inverse transformation and that rotor angle 
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value. Three voltages in the stator frame—Vu, Vv and Vw—are converted into the PWM values that are to 
be output by the three-phase timer unit.  
 
Current measurements and auto current regulators are executed at every carrier frequency. This process, 
which is known as “inner loop,” uses the fastest control algorithm. In contrast, encoder measurements, and 
especially speed measurements, are performed at a lower rate. Therefore, the auto speed regulator and 
related computations are performed using a slower process called “outer loop.” A typical carrier-frequency 
or inner loop rate is about 4kHz or more, and the encoder-based speed computation or outer loop rate is 
about 500Hz or so. Occasionally the outer loop rate can drop as low as 50Hz.   
 
Experts agree that vector control method controls the torque and flux very well, and it maintains the desired 
speed accurately. Vector control requires one position sensor and two current sensors to perform the 
necessary tasks. It also requires an MCU with high computing power so that the inner-loop and outer-loop 
processes can be executed properly. Additionally, the MCU must be capable of measuring two currents 
simultaneously, so it must have two sample-and-hold circuits in its ADC peripheral.   
 
The vector-control method provides dynamic torque control based on exact speed measurements and 
current measurements. Consider an example in which the load changes during rotation. Since speed is 
measured several times (typically at a 500Hz rate), any load changes that affects the speed will be detected 
and for the next rotation, the q-axis current will be adjusted properly to maintain the same speed. If higher 
current is required, it will be provided. Control and system experts generally regard vector control as the 
reference against which the performance of other methods are compared and evaluated.   
 
The vector-control method does have some drawbacks. It requires sensors and thus adds cost to the final 
implementation. Also, it mandates an MCU with high computing power, which may add cost.  
 



 
In Table V1, we see a comparison of the features, accuracy, and required MCU resources for the three 
control methods we have covered thus far: V/f open-loop, scalar, and vector control.  
 

Table VI.  Comparison of V/f open loop, scalar and vector control. 
 

 Features V/f open loop 
control 

Scalar control Vector control 

     
1 Control method Open loop for speed Closed loop for 

speed 
Closed loop for 
speed and current 

2 Speed control 
accuracy 

Poor High accuracy Very high 
accuracy 

3 Torque control None Indirect only Optimum method 
4 MCU Resources 3-ph timer with 

dead time insertion 
3-ph timer with 
dead time 
insertion 

3-ph timer with 
dead time 
insertion 

   Input capture 
w/timer to 
measure speed 

Input capture 
w/timer to 
measure speed 

    2 simultaneous 
channels of ADC 
to measure phase 
currents 

  CPU bandwidth 
very reasonable 

Very small 
increase in CPU 
bandwidth 

Very large 
increase in CPU 
bandwidth 

5 Sensors None Position sensor – 
Hall sensor, 
encoder, 
tachometer  

One position 
sensor and two 
current sensors 

6 Other notes Easy to implement Speed detection is 
necessary 

Speed and current 
detection 
necessary 

   Cost for position 
sensor 

Cost for position 
and current 
sensors 

    Cost for MCU 
computing power 

7 Overall Score OK Better Best control so far 
 
 
Sensorless control 
 
Since the vector control method we have just examined requires one position sensor and two current 
sensors, the final system configuration may be costly. Consumer applications, especially white goods, are 
very cost-sensitive and thus cannot afford this type of implementation. At the same time, these applications 
do not require the same performance accuracy for speed, as do industrial applications. Therefore, two other 
control techniques have been developed that provide adequate performance for the system, yet keep cost 
down. These techniques are called sensorless because they do not require any position sensors. Both 
methods use the same 180-degree modulation and vector control algorithm.   
 
The first of these methods eliminates the position sensor but keeps the two current sensors. It is known as 
“DCCT-based sensorless vector control” and is shown in Figure 49. Because this method uses no position 



sensor, angle and speed are estimated using the current measurements and voltages applied the previous 
PWM cycle.  

 
Figure 49.  Position sensorless control with 2 DCCT current sensors.  
 
The method employs a Kalman-filter approach based on principles of modern control theory, an observer-
based model, and a state transition matrix. Estimated angle and speed are used together in the same vector 
control algorithm to control the current in the q-axis. Such an implementation requires many matrix 
calculations, and thus an MCU with high computing capability is a requirement. In fact, the CPU 
bandwidth needed is nearly double that of vector control method. Gain adjustment in the auto speed 
regulator and auto current regulator is very difficult. Exact motor parameters must be known, particularly 
the q-axis and d-axis inductance parameters, which are difficult to measure. Despite the challenges, such 

control is a reality and has been implemented 
in several applications.   
 
In a second method, the position sensor and 
two DCCT sensors are eliminated. Currents 
are measured using the shunt resistance 
installed on the low side of the inverter, as 
shown in Figure 50. This shunt resistance is a 
precision resistor capable of measuring the full 
current range of the motor. Using one shunt, 
we measure two currents; thus this method is 
known as “one shunt current detection vector 
control” or simply “OSCD vector control.” 
 
 

Figure 50.  One shunt current detection method that eliminates DCCT and position sensor.   
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The implementation shown in Figure 51 is similar to that of the DCCT method, but it adds one more 
computing block, Current Meas. To understand why this addition is necessary, we’ll look at how the 
current is measured.   
 

 
Figure 51.  OSCD implementation flow with current measurement module.  
 

 
Figure 52.  One shunt current measurement technique using a additional timers to trigger ADC.  
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phase IGBT) is on at that time. So, we measure W phase current.  Next, if we measure the current between 
the rising edge of V and the rising edge of U, then we are measuring the W and V phase current together. 
This also means that we are measuring the U phase current, because the sum of all currents in a star-
winding motor is zero. Thus, we must make 2 current measurements at precise time during our interrupt 
processing. We need two other timer channels that can help us trigger the ADC at a precise time. An 
example is the Renesas M16C 3-phase timer unit. This unit has a link with timer channels TB0 and TB1, 
such that it will trigger the ADC channels AN0 and AN1 at a precise time. All we have to do is load the 
appropriate register values.   
 
As part of this process, we must compare the PWM values of all three phases and determine exactly how 
much time we need to load channels TB0 and TB1. It is important to note that the three PWM values 
continue to change constantly, so that W is not the largest. Thus, we need to test the largest value every 
time and set the proper flags for the current we are measuring. All the comparisons, settings, and 
identifications required by this method make for complex processing task, one that requires significantly 
more code and more CPU time. The requirements for CPU bandwidth are generally more than double those 
of other vector-control schemes. The more complex software and higher computing power requirements 
keep many designers from using this method.  
 
Performance by both sensorless methods is adequate and useful for applications that don't have tight 
accuracy requirements for speed. Cost is less than full vector methods and response is good—definitely 
better than that provided by scalar control. 
 
All six control algorithms we have examined, from 120-degree modulation through OSCD control, have 
been implemented in the Renesas M16C/28 series MCU with a prototype motor control platform. Measured 
performance, CPU bandwidth and code size are shown in Figure 53.  As we see, vector control with 
position and current sensors requires about 40% of the CPU bandwidth, while DCCT sensorless control 
requires about 74% or nearly double the bandwidth. Moreover, OSCD vector control without position and 
current sensors requires nearly 90% of CPU bandwidth, which is more than double the bandwidth used by 
vector control with sensors.   

 
Figure 53.  Comparison of CPU bandwidth and code size for six speed control algorithms. 
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Summary 
 
In Part 2 of this seminar, we introduced the 180-degree modulation technique and a procedure for three-
phase sine-wave generation. We detailed the necessary steps for sine-wave generation, examined the code, 
and measured the CPU performance. We then discussed V/f open-loop control with its implementation 
using the M16C series device. We looked at the speed profile with three different speed settings and at a 
start-up ramp sequence in frequency and voltage. Next we discussed the optimization of sine-wave code 
and examined the CPU performance. We continued with closed-loop scalar control using a speed sensor, 
discussed performance of the control algorithm, and compared this method with the V/f open-loop 
algorithm. In the final sections, we briefly discussed vector control and the sensorless DCCT and OSCD 
control algorithms. We compared the CPU performance for all six algorithms, from 120-degree modulation 
to sensorless vector controls.   
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Appendix A  Sine wave Generation Interrupt Code Example Listing.  
 
 

#pragma INTERRUPT/B tb2_int 
void tb2_int(void) 
{ 
 static unsigned int dTheta; 
#ifdef TIME_PWM 
     p7_0 = 1; 
#endif 
 if(Update) { 
  dTheta = DeltaTheta; 
  Update = FALSE; 
  } 
     sinpt_sum = dTheta + sinpt_sum; /*Sine pointer sum .. sine skip-read value + sine 
pointer sum */ 
     if(sinpt_sum > 23040) {        /*Sine pointer sum max. value? 23040 = 360° × 64 */ 
   NearZero = TRUE; 
        sinpt_sum = sinpt_sum - 23040; /*Sine pointer sum max value revisionsin*/ 
  } 
     sin_pt=sinpt_sum >> 6;             /* sine pointer sum / 64 */ 
/*U-phase pwm command value = carrier/4 - (sinN° × (torque command value × 
carrier/4))*/ 
     pwm_u_w = C4_DAT - (signed int)(((signed long)sin_tbl[sin_pt]*(signed 
long)tq_dat)>>19); 
/*V-phase pwm command value = carrier/4 - (sinN° × (torque command value × 
carrier/4))*/ 
     pwm_v_w = C4_DAT - (signed int)(((signed 
long)sin_tbl[sin_pt+offset_v[direction]]*(signed long)tq_dat)>>19); 
/*W-phase pwm command value = carrier/4 - (sinN° × (torque command value × 
carrier/4))*/ 
     pwm_w_w = C4_DAT - (signed int)(((signed 
long)sin_tbl[sin_pt+offset_w[direction]]*(signed long)tq_dat)>>19); 
/*U-phase PWM revision*/ 
    if(PWM_MAX < pwm_u_w) {                /*Duty at MAX?*/ 
        work_u = PWM_MAX;                  /*First half .. MAX value*/ 
        work_u1 = C2_DAT - PWM_MAX;        /*Last half .. carrier period/2 - MAX value*/ 
    } 
    else { 
         if(PWM_MIN > pwm_u_w) {           /*Duty at MIN?*/ 
            work_u = PWM_MIN;              /*First half .. MIN value */ 
            work_u1 = C2_DAT - PWM_MIN;    /*Last half .. carrier period/2 - MIN value*/ 
        } 
        else {                             /*MIN < duty < MAX*/ 
             work_u = pwm_u_w;             /* First half .. PWM command value*/ 
             work_u1 = C2_DAT-pwm_u_w;     /* Last half .. carrier period/2 */ 
        }                                  /* - U-phase PWM command value */ 
    } 
/*V-phase PWM revision*/ 
    if(PWM_MAX < pwm_v_w) {                /*Duty at MAX?*/ 
        work_v = PWM_MAX;                  /*First half .. MAX value */ 
        work_v1 = C2_DAT-PWM_MAX;          /*Last half .. carrier period/2 - MAX value*/ 
    } 
    else { 
         if(PWM_MIN>pwm_v_w) {             /* Duty at MIN? */ 



            work_v = PWM_MIN;              /* First half .. MIN value */ 
            work_v1 = C2_DAT-PWM_MIN;     /*Last half .. carrier period/2 - MIN  value*/ 
        } 
else {                             /* MIN < duty < MAX */ 
             work_v = pwm_v_w;             /* First half .. PWM command value */ 
             work_v1 = C2_DAT-pwm_v_w;     /* Last half .. carrier period/2 */ 
        }                                  /* - V-phase PWM command value */ 
    } 
/* W-phase PWM revision */ 
    if(PWM_MAX < pwm_w_w) {                 /*Duty at MAX?*/ 
        work_w = PWM_MAX;                   /* First half .. MAX value*/ 
        work_w1 = C2_DAT-PWM_MAX;           /* Last half .. carrier period/2 - MAX value*/ 
    } 
    else { 
         if(PWM_MIN > pwm_w_w) {            /*Duty at MIN?*/ 
            work_w = PWM_MIN;               /*First half ..MIN */ 
            work_w1 = C2_DAT-PWM_MIN;       /*Last half .. carrier period/2 - MIN value*/ 
        } 
        else {                              /*MIN < duty < MAX*/ 
             work_w = pwm_w_w;              /*First half .. PWM command value*/ 
             work_w1 = C2_DAT-pwm_w_w;      /*Last half .. carrier period/2 */ 
        }                                   /* - W-phase PWM command value*/ 
    } 
     ta4  = work_u;        /*Set U-phase PWM */ 
     ta41 = work_u1; 
     ta1  = work_v;        /*Set V-phase PWM */ 
     ta11 = work_v1; 
     ta2  = work_w;        /*Set W-phase PWM */ 
     ta21 = work_w1; 

 
#ifdef TIME_PWM 
     p7_0 = 0; 
#endif 
        
} 
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